A finite element characterization of a commercial endlessly single-mode photonic crystal fiber: is it really single mode?

نویسندگان

  • H. P. Uranus
  • E. van Groesen
چکیده

One of interesting properties of photonic crystal fibers (PCFs) is their possibility to be single-moded over a wide wavelength range, down to UV, while still having a reasonably large modal profile. Such properties are attractive for applications like optical sensing, interferometry, and transport of white light. PCFs, which is designed specially for such property are known as the endlessly single-mode (ESM-) PCFs [1]. However, the ESM property requires the holey cladding of a PCF to have a small air-filling factor. Such a requirement indeed creates problems for PCF manufacturers, as it does not go in harmony with other equally important properties of the PCF. A small air filling factor implies large leakage loss. So, the characteristics of commercially available ESM-PCFs, in fact come out from compromises between the desirable endlessly-single-modeness and the low leakage loss properties. Hence, depending on the type of applications, the term ESM itself could mislead its users, if the endlessly single modeness is presumed without proper precautions. In this work, using a vectorial finite-element leaky mode solver published recently [2], several dominant leaky modes of a commercial ESM-PCF [3] were investigated. Although the leakage loss of the fundamental mode is already 6 orders lower (on a dB/unit-length scale) than that of the nearest higher order modes, the leakage losses of these higher order modes are still quite low, which might still be significant, especially for short wavelength and short fiber-length applications. In addition to the ordinary-fiber-like hybrid core modes, the existence and significance of unusual modes like cladding-resonance modes and core-cladding-resonance modes were also numerically observed. Based on the loss discrimination between the most dominant and the nearest higher order mode, we set-up a criterion for the singlemodeness. Using that measure, we verified the single-modeness of the corresponding ESM-PCF and found that the endlessly single-modeness is valid only for a relatively long fiber, typical of local area network applications. This finding implies that applications employing short fiber-length, working in short wavelength regimes, should be prepared for significant effects of the higher order modes, e.g. by employing a mode stripper to suppress their effects. We suggest that ESM-PCF for short fiber-length applications need to be designed differently from those for long fiber-length applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Endlessly Single Mode Photonic Crystal Fibers with Desirable Properties using HC-EDA Algorithm

In this article, Hill Climbing (HC) and Estimation of Distribution Algorithm (EDA) are integrated to produce a hybrid intelligent algorithm for design of endlessly Single Mode Photonic Crystal Fibers (SMPCFs) structure with desired properties over the C communication band. In order to analyzing the fiber components, Finite Difference Frequency Domain (FDFD) solver is applied. In addition, a spe...

متن کامل

Modes of an endlessly single-mode photonic crystal fiber: a finite element investigation

Using a finite-element mode solver, the modes of a commercial endlessly single-mode photonic crystal fiber (ESM-PCF) were investigated. Based on the loss discrimination between the dominant and the nearest higher order mode, we set-up a criterion for the single-modeness. Using that measure, we verified the single-modeness of the corresponding ESM-PCF and found that the endlessly single-modeness...

متن کامل

The Influence of Core Diameter on Endlessly Single Mode Properties for Index Guiding Photonic Crystal Fiber

In this study Endlessly Single Mode properties of index guiding Photonic Crystal Fiber for different core radii had been studied. This work is done by using Finite Element Analysis by using COMSOL MULTIPHYSICS simulation software, which is used to designed two index guiding photonic crystal fiber with six air holes rings one by omitting single air hole and the other by omitting five air holes t...

متن کامل

Design of Single Mode Photonic Crystal Fiber with Outstanding Characteristics of Confinement Loss and Chromatic Dispersion over S to L Communication Band

In this article, a novel structure of photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and ultra-low confinement loss is presented. By replacing the circular air-holes of two first rings with the elliptical air-holes, a fiber with outstanding features of chromatic dispersion and confinement loss is designed. The proposed structure is optimized for operating in a wide...

متن کامل

Finite Element Analysis of Photonic Crystal Fibers

Abstract. A finite-element-based vectorial optical mode solver, furnished with Bayliss-Gunzburger-Turkel-like transparent boundary conditions, is used to rigorously analyze photonic crystal fibers (PCFs). Both the real and imaginary part of the modal indices can be computed in a relatively small computational domain. The leakage loss, the dispersion properties, the vectorial character, as well ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007